
Traceable Document Flows

Martin Bernauer†, Gerti Kappel†, Elke Michlmayr∗
† Business Informatics Group (BIG),

∗ Women’s Postgraduate College for Internet Technologies (WIT),
Institute for Software Technology and Interactive Systems

Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at, ∗ michlmayr@wit.tuwien.ac.at

Abstract

Ad-hoc data exchange, e.g., by sending email attach-
ments, leads to multiple copies or versions of a document
at dispersed nodes in a network. However, their relation-
ships such as is-a-version-of are lost. The relationships be-
tween a single document’s existing versions together with
the versions themselves form a so-called document flow,
which allows to trace where a document originated and
how it was distributed from node to node. The paper pro-
poses an ontological, machine-processable framework for
semantically describing and thus revealing document flows.
The presented approach provides a light-weight communi-
cation infrastructure for information exchange and collabo-
ration that is based on distributed versioning of documents
and offers flexible document annotation mechanisms. After
describing our infrastructure model, we present the imple-
mented prototype and discuss a range of application sce-
narios for traceable document flows (TDFs).

1. Introduction

With the advent of the Web, ad-hoc data exchange be-
tween individuals has become a daily routine. Unfortu-
nately, there are a lot of situations where documents1 are
exchanged without preserving any metadata except for the
document’s file name. Above all, this applies for the situa-
tion where persons want to exchange documents but cannot
rely on the same information infrastructure, e.g., because
they are working for different companies. Instead, they use
emails with attachments, instant messaging, or filesharing
applications (e.g., FTP).

∗ This research has been partly funded by the Austrian Federal Ministry
for Education, Science, and Culture, and the European Social Fund
(ESF) under grant 31.963/46-VII/9/2002.

1 Throughout the paper the notion “document” refers to a file of any file
type.

Thus today’s ad-hoc data exchange has the drawbacks
of disregarding metadata describing document flows be-
tween individuals and losing metadata describing docu-
ments themselves. The following examples show the diffi-
culties one may encounter. First, it is hardly possible to de-
termine where a document in one’s file system originated.
Usually answers to this question are found after human in-
quiries using one’s email system. Second, it is even more
difficult to determine who read or edited a document before.
Usually this involves lengthy inquiries and requires inter-
viewing other people. Third, metadata about the document,
if not stored proprietarily as part of the document, e.g., as it
is the case with documents in Sun StarOffice or Microsoft
Office format, are lost during data exchange between indi-
viduals. Again, harvesting metadata is a human task car-
ried out by determining and interviewing people who read
or edited the document before.

The first contribution is to provide an ontological,
machine-processable framework for describing document
flows and documents, thereby revealing the flows and meta-
data describing documents (referred to as annotations).
With it, users can query metadata describing document
flows, can query annotations, and can determine the past
and current contents of documents. By employing Semantic
Web technology, i.e., RDF [24] and RDFS [23], the meta-
data is described non-proprietarily and can be used by any
application.

The second contribution is to propose an infrastructure
model defining how document flows can take place in par-
allel with the ontological framework. Basically, every doc-
ument has a globally unique identifier which is preserved
when sending it across the network. Because a document
may be edited by its current owner and re-distributed af-
terwards, the model keeps track of various versions of the
document spread across the network. When re-distributing
a document, its document flow and associated metadata are
distributed along with it.



The infrastructure model for document flows is a peer-
to-peer (P2P) model so that a shared, central information
infrastructure is not necessary for document exchange. It
would also be very unlikely that for every document ex-
change, which may involve several individuals, a single
server can be negotiated or at least it would be a disrup-
tive overhead. A P2P model has the advantage that involved
users are loosely coupled and keep their autonomy. Natu-
rally, the disadvantage is the lack of central control and a
more complex model.

The presented approach can be beneficial in various ap-
plications out of which we describe four scenarios in Sec-
tion 4. The first scenario shows how TDFs can be used to
trace documents exchanged via email, e.g., for the use by a
program chair who sends papers and review forms to pro-
gram committee members. The second scenario describes
the use of TDFs for collaborative authoring, e.g., when edit-
ing/writing a book. The third scenario shows how TDFs can
be used as a light-weight infrastructure to support work-
flows, either to discover existing workflows (bottom-up) or
to model workflows and constrain document flows (top-
down). The last scenario shows how TDFs can be utilized to
share papers in a scientific community, e.g., to share meta-
data about papers and determine domain experts.

The paper is organized as follows. Section 2 presents
our model for traceable document flows. It comprises docu-
ments, versions, locations, and interactions thereon. In par-
allel, the ontological framework is defined. Section 3 de-
scribes the model’s implementation. Section 4 presents ap-
plication scenarios, exemplifying situations where users can
benefit from using the presented approach. Section 5 dis-
cusses related work. Finally, Section 6 concludes the paper.

2. Infrastructure Model and Ontological
Framework

This section presents the infrastructure model for TDFs,
which employs versioning as known from configuration
management [10]. To make instantiations of the model’s
concepts interoperable and thus available for other appli-
cations, we employ Semantic Web technology to express
them, i.e., RDF and RDF Schema. We define an ontolog-
ical framework for document flows comprising these con-
cepts, which are used when describing instantiations. Be-
ing a framework, any other ontology can be used in addi-
tion, e.g., for annotating documents. The use of additional
ontologies is influenced by the given application as is ex-
emplified in Section 4.

2.1. Documents and Versions

A document is identified by a document identifier (DID)
and keeps its identity across modifications. Since the model

is intended to be implemented on the Web, a DID is a URI
[14]. Between two subsequent modifications a document is
represented by a static concrete occurrence having certain
contents. In the presented model a document exists both as
an abstract concept represented by its DID (referred to as
document) and as set of concrete occurrences (referred to as
versions).

A version is identified by a version identifier (VID)
which is a URI. A modification to a version in the presented
model does not necessarily result in a new version, i.e., a
version’s content may change over time. All versions of a
document together represent its history. A version’s VID is
globally unique, i.e., unique across documents so that it suf-
fices to identify and retrieve the version.

The underlying version model is organized as a two-
level acyclic version graph (cf. [10]) that is composed of
branches, each consisting of a sequence of versions. This
model is employed in several version management systems
such as WebDAV [15, 16] and CVS [2]. While versions
constitute the nodes in the graph, three relationships be-
tween versions are distinguished, namely successor, off-
spring (starting a new branch), and predecessor. Each ver-
sion has at most one successor and possibly several off-
springs in different branches. Successor and offspring ver-
sions together are also referred to as following versions. Be-
cause a version can be merged into a version of another
branch, a version can have several predecessors.

Additionally to the used concepts known from version
models, we introduce the concepts of a current version and
a frozen version. A current version is a version that has
no succeeding version. Multiple current versions may exist
per document in different branches. To provide for a con-
sistent version graph, versions that are non-current can be
frozen to prevent them from further being modified, avoid-
ing that they become inconsistent with succeeding versions.
Whether non-current versions are frozen is determined by
configuration for each document separately (see below). By
not freezing a version a very unconstrained exchange of ver-
sions can take place, because a succeeding version does not
prevent the version from being modified.

Documents and versions are semantically described by
several RDF properties. At minimum a document as well
as a version must be described by properties df:title2

and df:description, which are derived from the respec-
tive properties defined by the Dublin Core Element Set
[17]. Each document is additionally described by property
df:freezeNonCurrentVersions, which defines whether its
non-current versions are frozen. Each version is addition-
ally described by its document (property df:ofDocument),
following versions (properties df:successorVersion and

2 prefix df is used for the document flow namespace
http://www.big.tuwien.ac.at/research/
documentflows



df:offspringVersion), and preceding versions (property
df:precedingVersion). Of course, other ontologies can be
used in addition to describe documents and versions, i.e., to
describe a user’s annotations.

2.2. Locations

Since a document as an abstract concept cannot be allo-
cated itself, versions are allocated at locations. Each version
is allocated at a single location, while one location can host
multiple versions of the same document. Note that the con-
cept of location is new to version models and thus makes the
presented version model more expressive. Locations form
the basis for modelling the distribution aspect of documents.

The meaning that is associated with a location can be
very diverse. It is assumed, however, that a location is in a
close relationship to a natural or juristic person such as a
version’s creator and owner. This relationship may also be
“weaker”, e.g., to persons who process a version or are sim-
ply interested in its contents. Usually, locations have auton-
omy in how to handle allocated versions, e.g., in how to
store, to version, and to control access. Thus a modified re-
lationship to a person, such as modified ownership, is likely
to go in parallel with a modified location.

A location is represented by a document peer, short peer,
that serves as a repository for versions, communicates with
other peers, and performs interactions requested by users
on versions. Peers may differ in the interactions they sup-
port, however, they must minimally support the interactions
described in Section 2.3. A peer is identified by a peer iden-
tifier (PID) which is a URI.

A peer is semantically described by properties df:name
and df:description. Moreover, property df:serves has a
peer as its domain and class df:ServedEntity as its range.
The latter is the root of a disjunct classification hierarchy
with subclasses df:Person, df:JuristicalPerson, df:Group,
and df:Role, which can be further specialized according to
specific applications. The classification reflects addressees
to whom document delivery in real life is targeted: per-
sons, juristical persons such as companies or clubs, groups
of persons such as departments of a company, and roles as
in workflows. If a peer does not have the property, the en-
tity it serves is unknown as it is the case with post office
boxes.

To maintain a document’s version graph, the dependen-
cies between multiple versions, which are likely stored at
different locations, have to be maintained. Following a P2P
model, the version graph is maintained distributed. Because
of the requirement of low coupling in a Web context, only
references to directly preceding and following versions are
maintained with each version stored at a peer. This deci-
sion is also influenced by the assumption that navigation
and communication from a version to its directly preceding

and following versions is more likely to be possible (e.g.,
by a firewall configuration) and will occur more often than
therefrom to other versions, e.g., the initial one.

Having introduced locations, the rationale behind em-
ploying versioning can be refined which is different from
the rationale in version management. While in the latter
capturing modifications and identifying configurations is of
primary concern, i.e., the evolution aspect of documents, the
presented model employs versions to distinguish between
and keep track of versions stored at different locations in
a network, i.e., the distribution aspect of documents. Nev-
ertheless, because the presented model is more expressive
than known version models, it captures the evolution aspect
as well.

A peer uses an RDF triple store to store semantic descrip-
tions of occurrences of the concepts presented so far – docu-
ments, versions, version graphs, and peers – and of interac-
tions (cf. Section 2.3). It can be queried about locally stored
occurrences of these concepts, e.g., remote versions can be
discovered by querying a local version to determine its pre-
ceding versions, offspring versions, and successor version.
Aside of querying for other versions, semantic descriptions
with application semantics of local versions can be queried
as well.

The presented approach can well be combined with re-
lated approaches to provide enhanced functionality. First,
for the replication of semantic descriptions which are cur-
rently only available locally, e.g., Edutella’s replication ser-
vice [20] can be used. Second, for answering queries that
search for an arbitrary version (i.e., not by navigating, start-
ing from a known version), existing discovery mechanisms,
e.g., provided by Gnutella [4] or JXTA [18] can be used.
Third, for the resolution of a DID to a VID, e.g., of the ini-
tial version or current versions, existing mechanisms for re-
solving location-independent identifiers, e.g., URNs, can be
used (cf. [25] for an overview). Fourth, for querying seman-
tic descriptions of a set of peers, related approaches such as
Edutella [20] can be used.

2.3. Interactions on Documents and Versions

Because the presented model for TDFs is based on a
version model, the interactions that are provided by peers
mostly have counterparts in version management systems
such as WebDAV and CVS, however, there are major differ-
ences. First, the presented model is richer by dealing with
locations, and second, there is no central control. Thus the
semantics of interactions with counterparts differ to cope
with locations and decentralization. Moreover, interactions
without counterparts are introduced.

Depending on a version’s environment it is in a certain
state. When being allocated at a peer, the version is checked-
in. Using appropriate interactions, a following version can



be retrieved from a peer. The retrieved version has status
checked-out. A checked-in version is online when the peer
it is allocated at can communicate with other peers. Oth-
erwise, or when the version is checked-out, it is offline.
A checked-out version can be checked in using interaction
checkin.

On checked-in version vi basically three basic interac-
tions can be performed. First, interaction read retrieves
the version’s content. Second, interaction checkout re-
trieves successor version vi+1 or offspring version vi.j.1

when used with option successor or offspring, re-
spectively. Third, checked-in version vk that resides in an-
other branch than vi can be merged into vi using interac-
tion merge. Thereby, vi becomes the successor of vk. The
merged versions may be allocated at different peers. Merg-
ing the versions’ contents can be done manually or automat-
ically by approaches such as [13].

When a version is checked out two files are retrieved
from the peer its predecessor is allocated at. The first file
contains the contents of the version and is thus called the
data file. The second file comprises semantic descriptions
concerning the version and the version graph (i.e., at least a
single statement that uses the df:precedingVersion prop-
erty). The file is thus called the metadata file. Seman-
tic descriptions that are available for the checked-out ver-
sion’s predecessor are taken over to the metadata file of the
checked-out version. Which data is taken over depends on
(a) what the user performing the checkout is allowed to read
from the data available for the checked-out version’s pre-
ceding version, and (b) which data the user performing the
checkout is interested in. For a checkin at a later date, both
the data and the metadata file are necessary. The descrip-
tions that were taken over are marked as such using appro-
priate statements.

Note that different to WebDAV and CVS the checkout
interaction in our model retrieves a following version not a
representation, thus creating a following version at check-
out time instead of the time when the modified representa-
tion is checked-in at a later date. It is essential to check out a
version, which has its own VID assigned to it, so that it can
be recognized as a version by humans and machines, mak-
ing it possible, e.g., to send it to other people via email and
most important to make statements about it using an appro-
priate language, e.g., RDF. Moreover, if non-current ver-
sions are frozen, a checked-out succeeding version cannot
become inconsistent with its predecessor. Whereby consis-
tency means that the succeeding version cannot lack modi-
fications that have been performed on its predecessor.

Aside of the interactions presented so far, which al-
low to construct version graphs, two interactions allow
to modify version graphs. First, interaction delete re-
moves a version from the version graph. Second, interac-
tion reallocate stores a version at another peer which

may involve modifying its VID (if the VID is a location
dependent identifier). A user who requests to perform an
interaction on a version which has been deleted or reallo-
cated is notified of the modification. Both interactions have
to be used with caution, since external references to the ver-
sion become “broken”. Semantic descriptions are updated
upon deletion or reallocation, however, replications of that
descriptions created by other applications become inconsis-
tent.

A peer does not only store semantic descriptions of doc-
uments and versions it hosts, but also semantic descrip-
tions of interactions it has performed. These descriptions
comprise data about the user who performed an interaction,
the date/time it was performed, and possibly a description
in natural text. Additional application specific descriptions
can be stored as well, e.g., if the interaction corresponds to
some state change in a workflow description. While the ef-
fects of interactions checkin, checkout, and merge
also manifest in the version graph, this is not entirely the
case for read, delete, and reallocate. Descriptions
of reads can be used, e.g., for recommendations, while de-
scriptions of deletes and reallocates can be used to
inform users of deleted versions or to navigate to reallo-
cated ones.

3. Implementation

We have implemented a prototype using JXTA as our
P2P platform. Regarding identifiers, PIDs are URNs in the
jxta namespace, DIDs and VIDs are UUIDs expressed as
URNs. Thereby the prototype is independent of physical
network addresses, i.e., peers and versions can be physi-
cally moved on a network without affecting their identifiers.
The resolution of URNs to network addresses is provided
by JXTA. Using the prototype, the user can navigate to pre-
ceding and following versions starting from any peer and
any version, can retrieve more information including anno-
tations about the version, and can read the version’s con-
tents. Because, among others, peers and versions are pub-
lished using so called JXTA advertisements, they can be dy-
namically discovered using JXTA’s Peer Discovery Protocol
as well.

For a different user interface to peers and a seamless in-
tegration with standard email clients, we have implemented
an SMTP-Filter and an IMAP/POP3-Agent, as shown in
Figure 1. They are transparent to users and operate in a
non-intrusive way. When a user wants to re-distribute a ver-
sion to another user, she/he simply creates an email and at-
taches the version’s data file to it. The SMTP-Filter checks
out a following version on behalf of the user, thereby re-
ceiving the data- and metadata file from the peer. Subse-
quently it either sends the version to the recipient by email
(alternative a in the figure) or checks it in directly at the



U s e r  Aa t t a c h e sd a t a  a n d  s e n d s  e m a i l

U s e r  B

P e e r  A

S M T P -F i l t e r

P e e r  B

I M A P /P O P 3 -A g e n t

M 2
V 1

N o t i f i c a t i o nM e s s a g e

DMV 1 M 1

M 2

V 2 M 2

M 2V 2

r e a d s  n o t i f i c a t i o n ,h a s  d a t a  a n d  s e m .d e s c r i p t i o n s  a th e r / h i s  d i s p o s a l

a . 2 )  c h e c k i nc h e c k o u t

a . 1 )  s e n d

V 2

V 2

b )  c h e c k i n

Figure 1. Sending and Receiving Traceable and Queryable Email

destination peer (alternative b). In the former case, the re-
cipient’s IMAP/POP3-Agent detects the received email and
checks the version in. In either case the recipient is notified
by email. Other user interface to peers, such as via HTTP
and Web Services, are reasonable, but have not been imple-
mented yet.

4. Application Scenarios

We present four exemplary application scenarios for
TDFs. Namely, these are traceable email, collaborative au-
thoring, workflows, and information exchange. In the sec-
ond and the third scenario, it can safely be assumed that the
contents of versions are not private and that people are will-
ing to let others know where their documents originated,
i.e., it is agreed that user specific data is available for others.
In the first and the fourth scenario, however, privacy con-
cerns may arise. There are several possibilities which can
be used alone or in combination to resolve them: First, user
data can be anonymized while still exploiting its value. This
is possible by aggregating the metadata and providing sta-
tistical data interpretation, e.g., for features like “Users who
read this document also read...”. Second, one can imple-
ment authentification and authorization to specify and re-
veal what users are allowed to read. We do not go into de-
tails about privacy issues which is outside the focus of this
paper.

4.1. Traceable and Queryable Email

The presented model for TDFs provides a non-
proprietary possibility for storing and querying (also re-
mote) annotations about documents that were received or
sent as email attachments. Moreover, users can easily de-
termine not only from whom a document was received, but
also where it originally originated and who else was in pos-
session of the document before. In addition, users can de-
termine to which persons a document they have sent is re-
distributed further on.

An exemplary use of traceable email is the manage-
ment of a paper review process. After submission, e.g., via
a web application, which created a document and an ini-
tial version, the program chair checks out a following ver-
sion of each paper and sends it (i.e., the data file) and the
review form (i.e., the metadata file) to program commit-
tee members. Note that the review form is an annotation
to the version, expressed according to an ontology for re-
views. Committee members possibly forward received pa-
pers to additional (sub-) reviewers. After each reviewer has
filled out his/her review form, he/she sends it back to the
super-reviewer or to the chair where it is checked. This ap-
proach is very flexible and allows the chair to query for the
status of each review at any time. Also an aggregated re-
port summarizing all reviews of a paper can be easily cre-
ated by querying the annotations.

Comparing traceable email with related work [11], the
latter focusses on defining machine-processable email con-
tents, while we focus on revealing a document’s flow that is
established via email.

4.2. Collaborative Authoring

As usual for version systems, our model can be em-
ployed for collaboratively editing documents. Naturally, the
functionality of TDFs can be compared to CVS in this sce-
nario. The main difference is that there is no need for a
shared central document repository. In addition, the anno-
tation mechanism is superior compared to the log facility
of CVS for two reasons. First, it uses an open format that
can be parsed with standard RDF tools. Second, it can be
adapted to users’ needs by employing additional ontologies.

For example, consider the complex collaborative task of
writing an edited book. For each book chapter, there are
multiple authors working together. Hence it is necessary to
create a document for each chapter. For all of these docu-
ments, df:FreezeNonCurrentVersions is set to true. Thus
only the author in possession of a current version owns
the “edit token”. She/he can edit the draft of the chapter
and hand it on to a co-author afterwards. It is also possible



that authors work in parallel and merge their changes after-
wards. At any moment, the editor can determine the status
of each chapter. In addition, the authors can have a look at
the current versions of the other chapters, e.g. to align their
terminology or their references.

4.3. Workflows

In environments where a workflow management system
(WfMS) is not available and/or where it is impossible to
deploy one (e.g., when a shared, central WfMS cannot be
negotiated) or where it is unreasonable to deploy a WfMS
(e.g. too costly or time-consuming), TDFs are a light-weight
alternative infrastructure for workflow management. These
environments are faced more and more often with the in-
crease of workflows crossing organizational boundaries.

Employed top-down, TDFs enables one for the definition
of workflows in the form of document flows at the schema
level. This can be done by using an appropriate ontology to
describe document flows, which define where and in which
order a document has to be processed. For example, user A
(every user has its own peer) can instruct user B to proof-
read a document by handing it over to him, followed by user
C who has to add a reference in a library catalog, and user
D who has to give her permission for its publication (e.g.,
stored as signed annotation). At any time, users are able to
query for subsequent steps and peers may restrict the docu-
ment flow to a valid one, i.e., one that accords to its schema.

TDFs can also be used in a bottom-up way. Since the
metadata describing document flows describes how ver-
sions were distributed across a network, it can be analyzed
ex post to discover document flows that took place regu-
larly. This way, workflow analysis can be carried out by in-
vestigating document flows.

4.4. Information Exchange

This scenario is comparable to well-known P2P fileshar-
ing applications like Kazaa [6]. The focus is on exchanging
static documents, meaning that all versions of a document
have the same content. Thus annotations are not longer spe-
cific for a single version of a document but for all of them.
Here, the revelation of document flows, the possibility to
annotate versions, and the possibility to query this metadata
distinguishes TDFs from other filesharing applications. Of
course users are not forced to annotate their documents, but
decide by themselves how much time they spend for anno-
tation.

Moreover, using TDFs previously unknown information
can be discovered by exploiting document flow metadata.
First, it is possible to find out all existing versions of a given
document. The total number can then be used to rank docu-
ments. The outcome of a query determining all peers where

a document’s versions are stored at may form a list of po-
tential contact addresses (e.g., persons). Most value can be
gained from these features if the shared documents are re-
lated to a single domain.

An example of this application scenario is that of scien-
tists working on the same subject. Typically, they all use a
folder in their local file system to store and manage their
collection of scientific papers related to their research field.
If they use TDFs to share their folder and annotations with
others, every user can benefit from observing which doc-
uments other users have read. E.g., one can determine re-
searchers working in the same field, determine domain ex-
perts for a field, or simply read annotations of other users.

5. Related Work

Traceable document flows are new to P2P applications,
which provide for distributed computing, file sharing, and
online collaboration [19]. Nevertheless, techniques of exist-
ing approaches can be employed for TDFs, e.g., for version
discovery using a central index as in [1], flooded requests
as in [4], or distributed index structures using super-peers
as in [3]. Approaches for directed routing using distributed
hash tables (DHTs), which assign an identifier to a version
based on a hash of its content and name and store it at peers
with similar identifier (cf. [8, 19] for an overview), cannot
be used for discovery because versions in our model can-
not be allocated freely. The closest related P2P system is
Storm [12], which makes documents identifiable by glob-
ally unique identifiers as we do, however, they provide for
linking between documents and versioning of documents
while we provide for document flows (using versioning) and
annotations.

Concerning distributed concurrent versioning systems,
the most prominent existing systems are CVSup [7] and
DCVS [5]. However, both of them are based on the
client/server-paradigm and provide repository replication
and thus can not be compared to TDFs which are based a
P2P model and provide distributed equitable repositories.

There are also approaches from office information sys-
tems in the 1980s that are related. They deal with form man-
agement, e.g., [22] presents among others forms that can
flow through an organization. It differs from TDFs with re-
spect to flowing artifacts (only proprietary forms can flow),
the data model (versioning is not employed), functionality
(annotations are not available), and the architecture (using
central nodes).

There is a model for encoding semantic information in
P2P networks, namely the SWAP metadata model [9] that
takes a similar approach of annotating information with
metadata about its origin. Unlike our approach which does
not change the format of documents, all information is ad-
ditionally converted to RDF representations. The SWAP



model assumes that data is not physically replicated be-
tween peers but rather queries are used for information ex-
change. Since document distribution is an important enabler
for TDFs, this a a major difference. An interesting approach
is the query routing algorithm REMINDIN’ [21] designed
for the SWAP platform. It uses observation of other peers’
queries and answers to determine their domain knowledge
and to decide who is the right peer to answer a certain query.
An adaption of this algorithm for TDFs would be useful for
the information exchange scenario which we presented in
Section 4.4.

6. Conclusion

In this paper, we presented an infrastructure model and
an ontological framework for semantically describing doc-
ument flows. As we showed in Section 4, this light-weight
communication infrastructure for information exchange and
collaboration can be used in a variety of application scenar-
ios. In addition, we demonstrated that semantic descriptions
considerably improve collaboration.

References

[1] Napster Homepage. http://napster.com, 2001.
[2] Concurrent Versions System (CVS) Homepage.

http://cvshome.org, 2003.
[3] FastTrack Homepage.

http://www.fasttrack.nu, 2003.
[4] Gnutella Homepage.

http://rfc-gnutella.sourceforge.net, 2003.
[5] Distributed Concurrent Versions System (DCVS) Home-

page. http://www.elegosoft.com/dcvs/, 2004.
[6] Kazaa Homepage. http://www.kazaa.com/, 2004.
[7] The CVS-Optimized General-Purpose Network File Distri-

bution System (CVSup) Homepage.
http://www.cvsup.org/, 2004.

[8] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Looking up Data in P2P Systems. Communica-
tions of the ACM (CACM), 46(2), 2003.

[9] J. Broekstra, M. Ehrig, et al. A Metadata Model for
Semantics-Based Peer-to-Peer Systems. In Workshop on Se-
mantics in Peer-to-Peer and Grid Computing at the WWW
Conference, 2003.

[10] R. Conradi and B. Westfechtel. Version Models and Soft-
ware Configuration Management. ACM Computing Surveys,
30(2), 1998.

[11] O. Etzioni, A. Y. Halevy, et al. Semantic Email: Adding
Lightweight Data Manipulation Capabilities to the Email
Habitat. In Workshop on Web and Databases (WebDB),
2003.

[12] B. Fallenstein, T. J. Lukka, et al. Storm: Using P2P to Make
the Desktop Part of the Web. In Hypertext and Hypermedia
Conference, 2004.

[13] R. La Fontaine. Merging XML Files: a New Approach Pro-
viding Intelligent Merge of XML Data Sets. In XML Europe
Conference, 2002.

[14] IETF. Uniform Resource Identifiers (URI): Generic Syntax.
http://ietf.org/rfc/rfc2396.txt, 1998.

[15] IETF. HTTP Extensions for Distributed Authoring – Web-
DAV. http://www.ietf.org/rfc/rfc2518.txt,
1999.

[16] IETF. Versioning Extensions to WebDAV. http://www.
ietf.org/rfc/rfc3253.txt, 2002.

[17] Dublin Core Metadata Initiative. Dublin Core Metadata
Element Set, Version 1.1: Reference Description. http:
//dublincore.org/documents/dces/, 2003.

[18] Sun Microsystems. JXTA. http://jxta.org, 2003.
[19] D. S. Milojicic, V. Kalogeraki, et al. Peer-to-Peer Comput-

ing. Tech. Rep. HPL-2002-57, HP Labs, 2002.
[20] W. Nejdl, B. Wolf, et al. EDUTELLA: a P2P Networking In-

frastructure based on RDF. In World Wide Web Conference,
2002.

[21] C. Tempich, S. Staab, et al. REMINIDIN’: Semantic Query
Routing in P2P Networks based on Social Metaphors. In
World Wide Web Conference, 2004.

[22] D. Tsichritzis. Form Management. Communications of the
ACM (CACM), 25(7), 1982.

[23] W3C. RDF Vocabulary Description Language 1.0:
RDF Schema. http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/, 2004.

[24] W3C. Resource Description Framework (RDF): Concepts
and Abstract Syntax. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/, 2004.

[25] T. Werf-Davelaar. Identification, Location and Versioning of
Web-Resources. http://www.kb.nl/coop/donor/
rapporten/URI.html, 1999.


