

Technische Universität Wien

Vienna University of Technology

Forming Heterogeneous Groups for Intelligent Collaborative Learning Systems with Ant Colony Optimization

Sabine Graf Vienna University of Technology Austria graf@wit.tuwien.ac.at Rahel Bekele Addis Ababa University Ethiopia rbekele@sisa.aau.edu.at

- Collaborative learning is one of the many instructional approaches to enhance student performance
- Collaborative learning has many advantages
- Computer-based tools for collaborative learning focus mainly on collaborative interaction (sharing information & resources between students)
- Group formation process plays a critical role
 - \rightarrow heterogeneity

Aim:

Develop a tool that supports group formation by incorporating heterogeneity based on personality and performance attributes \rightarrow Mathematical approach for the group formation problem

- \rightarrow Optimization algorithm (Ant Colony Optimization)
- \rightarrow Experiments on developed tool

- Personality and performance attributes:
 - Group work attitude
 - Interest for the subject
 - Achievement motivation
 - Self-confidence
 - Shyness
 - Level of performance in the subject
 - Fluency in the language of instruction
- Each attribute has three values
 (1 = low, 2 = moderate, 3 = high)
- Vector space model for describing students' data e.g.: S₁(3, 1, 2, 1, 3, 3, 2)

Student score: $\sum_{i=1}^{n} A_i(S_j)$

Heterogeneity between two students: Euclidean Distance (ED)

 Small, mixed-ability groups of four members: 1 high achiever, 2 average achievers, and 1 low achiever (Slavin, 1987)

- Previous experiment:
 - Students were grouped randomly, on self-selection basis, or according to GH
 - → Students who are grouped according to GH performed better
- Limitation of GH: based only on score values

 S_1 (3, 1, 2, 1, 3, 3, 2) \rightarrow student score = 15

 S_2 (1, 3, 3, 2, 1, 2, 3) \rightarrow student score = 15

- Extended approach
 - Groups should have high, average, and low achiever (GH)
 - Incorporate personality and performance attributes separately (Euclidean Distance)
 - Groups with similar degree of GH → coefficient of variation (CV) of GH values
 - \rightarrow Objective function:

$$F = w_{GH} \cdot GH + w_{CV} \cdot CV + w_{ED} \cdot ED \rightarrow \max$$

- Multi-agent meta-heuristic for solving NP-hard combinatorial optimization problems
- Advantages
 - Easy to apply to different optimization problems (only requirement: representation as graph)
 - Algorithm can be adapted to the problem rather than adapting the problem to the algorithm
 - Decentralization and indirect communication
- Ant Colony System
 - Developed by Dorigo and Gambardella (1997a)
 - Competitive with other optimization approaches such as neural networks and genetic algorithms (Dorigo and Gambardella, 1997b)

Trail-laying trail-following behavior

- Ants lay pheromone trails
- Succeeding ants decide about the next node based on local and global information (random proportional transition rule)
- The more pheromones on a path, the greater the probability that succeeding ants use this path, which lay again pheromones
- Pheromones evaporate over time
- → Global map of pheromone trails (indicating the quality of the paths)

- How to calculate local information?
 - Euclidean Distance (ED)
 - Goodness of heterogeneity (GH)
- How to calculate global information?
 - Based on the approach in ACS (pheromone update rules)
 - Updating is done between all edges in the group (amount of pheromones is for each of these edges equal)
- How to measure the quality of the solution?
 - 2-opt local search method is applied to each solution
 - Quality is measured according to the objective function

$$F = w_{GH} \cdot GH + w_{CV} \cdot CV + w_{ED} \cdot ED \rightarrow \max$$

- 512 student data records
- 5 randomly chosen data sets of 100 students
- 20 runs per data set
- Each run is performed at least for 100 iterations and stops after the solution does not changed over the last 2/3 iterations
- Result:

Dataset	No. of students	Average GH	Average CV	Average ED	Average Fitness	SD Fitness	CV Fitness
А	100	129.81286	39.22323	363.93597	52.14131	0.03320	0.06367
В	100	117.20000	35.18174	377.41486	51.55805	0.02935	0.05693
С	100	114.23423	41.90564	374.14736	49.42179	0.03290	0.06656
D	100	132.17583	31.34393	354.58765	52.58446	0.02650	0.05039
E	100	131.95833	31.43714	372.21424	54.86994	0.04597	0.08378

Example of a typical group:

- Proof scalability Experiment with one data set with all 512 students' data
- Modifications
 - Applying 2-opt only for 20 % of the students/nodes (randomly selected)
 - Goal: Finding a good solution
 - Termination condition: stop after 200 iterations
- Result
 - CV values are higher than for the previous experiments with 100 students but still low (SD=0.37, CV=0.793)
 - found stable, good solutions
- Comparison with an iterative algorithm
 - Average GH-Value: 4.2 (1.6)
 - Euclidean Distance: 2.49 (2.40)

- Developed an approach to build heterogeneous groups
- Heterogeneity is based on
 - Different personality and performance attributes
 - A general measure of the goodness of heterogeneity
 - Coefficient of variation of goodness of heterogeneity values
- Implemented a tool that uses an ACO algorithm for optimization
- Experiments
 - Algorithm finds stable solutions close to the optimum with a data set of 100 students
 - Scalability was demonstrated with a data set of 512 students
 Algorithm found stable, good solutions
- Future Work
 - Combining the tool with an online learning system
 - Provide more options for user to adjust the algorithm

