

Technische Universität Wien

Vienna University of Technology

Analysing the Relationship between Learning Styles and Cognitive Traits

Sabine Graf Vienna University of Technology Austria sabine.graf@ieee.org Taiyu Lin Massey University New Zealand taiyu.lin@gmail.com Kinshuk Athabasca University Canada kinshuk@ieee.org

Learners have different needs

- Background knowledge
- Learning goals
- Learning styles
- Cognitive traits
- ...
- Incorporating these needs increase the learning progress, leads to better performance, and makes learning easier
- → Adaptive systems

- For providing adaptivity, the needs and characteristics of learners have to be known first
- Student Modelling refers to the process of building and updating a student model, which includes relevant data about the student
- How to get this information?

Collaborative Student Modelling

 Learners are asked to provide explicitly information about their needs and characteristics (e.g., filling out a questionnaire, performing a task, and so on)

Automatic Student Modelling

- The system infers the needs and characteristics automatically from the behaviour and actions of students in an online course
- Advantage:
 - Students do not have additional effort
 - Approach is direct and free from the problem of inaccurate self-conceptions
- Drawback/Challenges:
 - Getting enough reliable information to build a robust student model
 - Suggestions: use of additional sources

Aim

- Find mechanisms that use whatever information about the learner is available to get as much reliable information to build a more robust student model
- Investigate relationship between learning styles and cognitive traits
 - → Additional data

→ Improve the identification process of learning styles and cognitive traits in adaptive learning environments

Relationship between Cognitive Traits and Learning Styles

Why shall we relate cognitive traits and learning styles?

- Case 1: Only one kind of information (CT or LS) can be detected in the system
 - \rightarrow Get some hints about the other one

Case 2: Both kinds of information are incorporated
 → The information about the one can be included in the identification process of the other and vice versa
 → The student model becomes more reliable

- Richard M. Felder and Linda K. Silverman, 1988
- Each learner has a preference on each of the four dimensions
- Dimensions:
 - Active Reflective learning by doing – learning by thinking things through learning by discussing & group work – work alone
 - Sensing Intuitive concrete material – abstract material more practical – more innovative and creative patient and careful/not patient and careful with details standard procedures – challenges
 - Visual Verbal

learning from pictures – learning from words

 Sequential – Global learn in linear steps – learn in large leaps good in using partial knowledge – need "big picture" interested in details – interested in the overview

- Developed by Lin et al., 2003
- CTM is a student model that profiles learners according to their cognitive traits
- Includes cognitive traits such as
 - Working Memory Capacity
 - Inductive Reasoning Ability
 - ...
- Cognitive traits are more or less persistent

 CTM can still be valid after a long period of time
 - → CTM is domain independent and can be used in different learning environments, thus supporting life long learning

- Also known as short-term memory
- Researchers do not agree on the structure of working memory, they agree that it consists of storage and operational sub-systems
- Allows us to keep active a limited amount of information (7+/-2 items) for a brief period of time

Literature Review

	High WMC	Low WMC	
der-Silverman Learning Style Dimensions	Reflective	Active	
	Beacham, Szumko, and Alty (2003)		
	Hadwin, Kirby, and Woodhouse (1999)		
	Kolb (1984)		
	Summervill (1999)		
	Witkin et al. (1977)		
	Intuitive	Sensing	
	Bahar and Hansell (2000)		
	Davis (1991)		
	Ford and Chen (2000)		
	Hudson (1966)		
	Kinshuk and Lin (2005)		
	Scandura (1973)		
	Witkin et al. (1977)		
	Verbal or Visual	Visual	
	Beacham, Szumko, and Alty (2003)		
	Simmons and Singleton (2000)		
	Wey and Waugh (1993)		
	Sequential	Global	
le	Beacham, Szumko, and Alty (2003)		
	Ford and Chen (2000)		
	Huai (2000)		
	Liu and Reed (1994)		
	Mortimore (2003)		
	Witkin et al. (1977)		

	High WMC	Low WMC
Styles	Field-independent	Field-dependent
	Al-Naeme (1991)	
	Bahar and Hansell (2000)	
	El-Banna (1987)	
ive.	Pascual-Leone (1970)	
ogniti	Divergent	Convergent
	Bahar and Hansell (2000)	
0	Serial	Holistic
	Huai (2000)	

- Analyse the relationship between learning styles and working memory capacity by the use of real data
- Compare results of analyses with results from literature review
- 297 students from Vienna University of Technology participated
- Students were asked to fill out a questionnaire in order to detect their learning styles and perform a psychometric test in order to measure their WMC

Index of Learning Style (Felder & Soloman, 1997)

- Commonly used instrument for identifying learning styles according to FSLSM
- 44-item questionnaire (11 questions per dimension)
- Each learner is characterised by four values between +11 and -11
- Questionnaire is available in German

- From Simple Span Task to Web-OSpan Task
 - Simple Span Task: participants have to remember a series of stimulus items (digits or words)
 - Complex Span Task: Researchers agree that WMC covers also operational aspects rather than only storage aspects
 - Several versions exist, the operation word span task becomes the most popular task to measure WMC
- Web-OSpan Task (Lin, 2005)
 - Simple operations such as 1+(2*3) = 6 are presented
 - Participant has to answer with true or false
 - After each operation, a word is displayed
 - After 2-6 operations, all words have to be typed in (in the correct order)
 - Overall 60 operations and 60 words

Web-OSpan Task

- Measures:
 - Total number of correct recalled words
 - Total number of correct calculations (process) measure)
 - Maximum set size the subject had the words correctly recalled (set size memory span)
 - Mean response latency
 - Partial correct memory span
- WMC is measured by the number of correct recalled words
- Available in German

Data Cleansing

 Discard data from students who made more then 15 mistakes in the calculations or spend less than 5 minutes at ILS

→ 225 students

- Improved reliability of ILS through removing weak reliable questions
 - 1 question from active/reflective dimension
 - 1 question from sensing/intuitive dimension
 - 3 question from visual/verbal dimension
 - 2 question from sequential/global dimension

General Analysis

Correlation analysis (Pearson's & rank correlation)

In-depth Analysis

- Three groups were build for each dimension (e.g., active, balanced, reflective)
- Chi-Square test was used to identify differences between the groups
- If differences exist
 - Correlation analysis between WMC and the absolute values of ILS dimensions
 - Split data into two subsets (positive pole & balanced; negative pole and balanced)
 - For each subset, correlation analysis and group comparison methods were performed

In-depth Analysis

- For visual/verbal dimension:
- Used correlation of frequencies in order to prove onedirectional relationship
 - Separate visual and verbal learners
 - For each subset, the number of learners in WMC groups was calculated
 - Rank correlation analysis was preformed in order to find a correlation between frequencies of WMC groups for e.g. verbal learners
 - Results of verbal and visual learners were compared
 - Same was done for the two subsets with high and low WMC learners

General Analysis

• Correlation with total number of recalled words

	Corr. Value	р
set size memory span	tau=0.649	0.0
	rho=0.757	0.0
partial correct memory span	tau=0.741	0.0
	rho=0.883	0.0
Mean response time	r = -0.361	0.0
process measure	tau=0.191	0.0
	rho=0.258	0.0

Results – Active/Reflective Dimension

- General Analysis: No significant correlation
- In-depth Analysis
 - Chi-Square Test: significant result \rightarrow difference between active/balanced/reflective group
 - Correlation analysis between WMC and the absolute act/ref values: significant negative 0 results for WMC, set size memory span, partial correct memory span
 - balanced learning style <-> low WMC strong active or reflective learning style <-> high WMC
 - Subset (active & balanced)
 - Correlation analysis: significant negative result for WMC, set size memory span, partial correct memory span, process measure

active learning styles <-> low WMC balanced learning style <-> high WMC

- Mann-Whitney U test (comparing low and high WMC over active/balanced values): Low WMC -> active learning style High WMC -> balanced learning style
- Subset (reflective & balanced) 0
 - Correlation analysis: significant positive result for WMC (according to Spearman's rho)

Reflective learning style -> low WMC Balanced learning style -> high WMC

- T test (comparing reflective and balanced group over WMC) Reflective learning style -> low WMC Balanced learning style -> high WMC
- balanced learning style <-> low WMC \rightarrow
- active learning style <-> high WMC \rightarrow
- reflective learning style <-> high WMC \rightarrow

Results – Sensing/Intuitive Dimension

- General Analysis: significant negative correlation for size set memory span
- In-depth Analysis
 - Chi-Square Test: significant result \rightarrow difference between active/balanced/reflective group
 - Correlation analysis between WMC and the absolute sen/int values: not significant \rightarrow indication for linear correlation
 - Subset (active & balanced) 0
 - Correlation analysis: significant negative result for set size memory span Sensing learning styles <-> low WMC
 - balanced learning style <-> high WMC
 - Mann-Whitney U test (comparing low and high WMC over sensing/balanced values):
 - Low WMC -> sensing learning style High WMC -> balanced learning style
 - T test (comparing reflective and balanced group over WMC)
 - Sensing learning style -> low WMC Balanced learning style -> high WMC
 - Subset (reflective & balanced) 0
 - Correlation analysis: significant negative result for mean response latency
- Sensing learning style <-> low WMC \rightarrow
- The more balances, the higher is WMC \rightarrow
- No evidence about intuitive part \rightarrow

- General & In-depth Analysis: no significant results for bi-directional relationship
- Analysis of correlations of frequencies in sub-datasets (
 -> onedirectional relationship)
 - Subset (low & high WMC)
 - Correlation of frequencies of vis/ver preferences: strong positive correlation for low and high WMC
 → argued by the fact that more learners have visual than verbal preference
 - Subset (visual and verbal learning style)
 - Correlation of frequencies of WMC groups
 - Significant positive correlation for learners with verbal preference
 - \rightarrow for verbal learners a high frequency is associated with high WMC, whereas few verbal learners have low WMC
 - No significant correlation for visual learners
- → Verbal learning style → high WMC

- General & In-depth Analysis: no significant results
- Disagreement with literature (indicating that a correlation between sequential learners and high WMC as well as global learners and low WMC)

Active/reflective:

- High WMC <-> balanced learning preference
- Low WMC <-> strong active preference
- Low WMC <-> strong reflective preference

Sensing/intuitive:

- Low WMC <-> sensing preference
- High WMC <-> balanced learning preference

Visual/verbal:

- Verbal learning preference -> high WMC
- Low WMC -> visual preference
- Sequential/Global:
 - No relationship found
- → Identified relationships can be included in the detection process of learning styles and cognitive traits
- → Improve student modelling process and lead to a more robust student model

- Investigated the relationship between FSLSM and WMC by conducting a study with 297 students
- Results show a relationship between WMC and active/reflective, sensing/intuitive and visual/verbal dimension, whereas no relationship was found for the sequential/global dimension
- Relationships provide additional information about the learners which can be used to improve the detection process of learning styles or/and cognitive traits
- Future Work
 - Include the findings of this study to improve the detection process of cognitive traits in CTM
 - Include the findings of this study to improve the detection process of learning styles
 - More granular analysis by considering specific characteristics within the FSLSM dimensions

